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Chernyi (1.21 developed the lass of similitude for flora around thin 
blunted cones and wedges. In the present note, It Is shown that within 
the same fromerork analogous laws are valid for thin blunted power-lar 
shapes, both two-dimensional (v = 0) and axisymmetric. 

Let the form of the bodies be described by 

r=cdXn (ael, r*r,, n = const) 

Here L represents some linear dimension, x = LX, the axial coordinate 
with origin at the nose, and r,,, the radius of the 
ing to the law of similitude for flows around thin 
solution of the problem depends on the parameters 

Ma, 

blunted nose. Accord- 
blunted bodies 131 the 

Here M is the Maoh number of the oncoming stream, c the nose drag 
coefficient, and y the adiabatic parameter. The problei lacks a character- 
istic length so that L may be removed from the system of determining 

parameters, as in [l] and [21, for instance by setting K = 1. Then the 

solution, specifically the quantities p and R (a2&i&,‘p is the pressure 
on body; aLR is the shape of shock wave; p,,., is the free-stream pressure; 
urn is the free-stream velocity) will be functions of the variable 

X = f_ &3+9/ t1+4 2 ( > *‘(l+“) % 
In order to obtain qualitative results let us apply an approximate 

gross method, corresponding to that In [ll and M. Let us use the law 
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of plane sections* and the integrals of the laws of motion, and in the 
evaluation of the kinetic energy and of the Impulse of the gas, let us 
assume that the whole mass of the disturbed gas is concentrated lmmedi- 
ately downstream of the shock wave and that the velocity of this mass 
(normal to the axis of the body) is Identical with the velocity of the 
gas just at the shock wave*+. In the evaluation of the internal energy of 
the disturbed gas, let us assume that in the high-entropy low-density 
layer the pressure is constant at each section X = const and equal to the 
pressure on the body at that section. In the highly compressed regions of 
the gas, we shall take the pressure and density to be equal to their re- 
spective values just behind the shock wave. The assumption concerning the 
density is here necessary for the evaluation of the thickness of the 
region of the highly compressed gas. 

With these assumptions the energy and impulse equations (per unit 
angle between meridional sections in the axisymmetric case) become 

X 

R’2Rlf” =I +yn pXn(lfv)-ldX 

s 
0 

X 
2 - Rl+VR’ = 2v 

rfl s 
pRYdX (1) 

0 

Here, the assumption Ma >> 1 was made, for the sake of simplicity. 

As x - 0 the solution of Equations (1) take the form (2). and is an 
approximation to the blast-wave solution [4] 

p = xyx-2(‘+9) /cs+vj . R = ,,,X2/(v+~) 

4 
x0 = 9 (7 + 1) xoss x0 = [.+ (Tqq 21r_‘ij’/’ 

1 1/ T-1 
(2) 

Xl = T 
2 (27 - 1) ’ x1= 2v/(7+ 1)x1 

For y = 1.4, the Equations (2) yield values of pressure which exceed 
the exact blast-wave results [41 by 10% for v = 0 and by 20% for v = 1. 
(These differences are two and a half times smaller than those in [1,21. ) 

l The equivalence principle of Heyes. 

l * For details of such procedure see [31, English translation pp. 218- 
220. 
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As X - a, the solution takes the form 

p --_ p0 zzz cJ@n-i), R = R, = BX” 

Here, the following notation is used 

c ;1 %I-“nm 
r+ 1 B2Y 

B’+y = 

m=2nfnv-1 

For the axisymmetric case with y = 1.4 the Expression (3) gives values 

of pressure which differ from those of the exact solution [5] by not more 

than 5% in the range 0.65 < 

n < 1. (In fact, the approxi- 

mate solutions match the 

exact ones for n = 1 and 

n = 0.73.) 

Hence, the Equations (1) 

are sufficiently accurate to 

be used for qualitative com- 

parison of the effects of 

various parameters. 

The results for p/p, of numerical integrations of the system (1) for 

v = 1 and for various values of n are displayed in the adjoining figure: 

solid lines designate the case y = 1.4 and dotted lines y = 1.2. For com- 

parison, the approximate solution 2 for v = n = 1 and y = I.4 is shown as 

the line of points and dashes. 

It is clear that a decrease in y leads to a shortening of the region 

of influence due to blunting. As the parameter n decreases, the curves of 

p/p,, lose their oscillatory character and become almost monotonic as n 

approaches 0.65. Let Cz and C 
X0 

represent the drag coefficients of the 

blunted and of the original body up to a given X. For y = 1.4 and v = 1, 

the ratio Cz/C 
%O 

does not have a minimum for n < 1 and approaches unity 

monotonically from above as X increases indefinitely. Hence, the drag of 

a blunted power-law body with n < 1 is always larger than the drag of the 

sharp body no matter what the length to bluntness ratio x/ro. However, 

for n = 1.1, the drag ratio Cz/Cz has a minimal value of 0.9 when Z= 1.5. 

We note that Chernyi [2] found s&h a minimum when n = 1. 
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